

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering

Spring 2024

INTRODUCTION TO COMPUTER VISION

Atlas Wang Associate Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin https://vita-group.github.io/

What are image edges?

grayscale image

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

✓ You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

✓ You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?

 \checkmark You use finite differences.

Finite differences

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Finite differences

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

What convolution kernel does this correspond to?

Finite differences

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

1D derivative filter

1	0	-1
---	---	----

The Sobel filter

Vertical Sober filter:

"Derivative"

Sobel filter example

original

which Sobel filter?

which Sobel filter?

Computing image gradients

1. Select your favorite derivative filters.

Computing image gradients

1. Select your favorite derivative filters.

2. Convolve with the image to compute derivatives.

$$\frac{\partial \boldsymbol{f}}{\partial x} = \boldsymbol{S}_x \otimes \boldsymbol{f} \qquad \qquad \frac{\partial \boldsymbol{f}}{\partial y} = \boldsymbol{S}_y \otimes \boldsymbol{f}$$

Computing image gradients

1. Select your favorite derivative filters.

2. Convolve with the image to compute derivatives.

$$rac{\partial \boldsymbol{f}}{\partial x} = \boldsymbol{S}_x \otimes \boldsymbol{f} \qquad \qquad rac{\partial \boldsymbol{f}}{\partial y} = \boldsymbol{S}_y \otimes \boldsymbol{f}$$

3. Form the image gradient, and compute its direction and amplitude.

$$\nabla \boldsymbol{f} = \begin{bmatrix} \frac{\partial \boldsymbol{f}}{\partial x}, \frac{\partial \boldsymbol{f}}{\partial y} \end{bmatrix} \qquad \theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \qquad ||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}$$
gradient direction amplitude

Image gradient example

gradient amplitude

vertical derivative

horizontal

derivative

How does the gradient direction relate to these edges?

How do you find the edge of this signal?

How do you find the edge of this signal?

Using a derivative filter:

What's the problem here?

Differentiation is very sensitive to noise

When using derivative filters, it is critical to blur first!

Derivative of Gaussian (DoG) filter

Derivative theorem of convolution:

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

 How many operations did we save?

Tradeoff between smoothing and localization

1 pixel

3 pixels

7 pixels

• Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

Laplace filter

Basically a second derivative filter.

• We can use finite differences to derive it, as with first derivative filter.

first-order
finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h} \longrightarrow 1D$$
 derivative filter
 $1 \quad 0 \quad -1$
second-order
finite difference $f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \longrightarrow Laplace filter$?

Laplace filter

Basically a second derivative filter.

• We can use finite differences to derive it, as with first derivative filter.

first-order
finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h} \longrightarrow 1D$$
 derivative filter
 $1 \quad 0 \quad -1$
second-order
finite difference $f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \longrightarrow 1D$ derivative filter
 $1 \quad 0 \quad -1$

Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

Laplace and LoG filtering examples

Laplacian of Gaussian filtering

Laplace filtering

Laplacian of Gaussian vs Derivative of Gaussian

Laplacian of Gaussian filtering

Derivative of Gaussian filtering

Laplacian of Gaussian vs Derivative of Gaussian

Laplacian of Gaussian filtering

Derivative of Gaussian filtering

Zero crossings are more accurate at localizing edges (but not very convenient).

But Wait ... Is Pixel Difference the Final Answer?

• Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Where do humans see boundaries?

Score = confidence of edge. For humans, this is averaged across multiple participants.

Score = confidence of edge. For humans, this is averaged across multiple participants.

Canny Edge Detector

- Arguably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise

Canny edge detector

1. Filter image with x, y derivatives of Gaussian

Derivative of Gaussian filter

Compute Gradients

(pixel intensity x 2 + 0.5 for visualization)

Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient

Compute Gradient Magnitude

sqrt(XDerivOfGaussian .^2 + YDerivOfGaussian .^2)

= gradient magnitude

Compute Gradient Orientation

- Threshold magnitude at minimum level
- Get orientation via theta = atan2(yDeriv, xDeriv)

Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" to single pixel width

Non-maximum suppression for each orientation

At pixel q: We have a maximum if the value is larger than those at both p and at r.

Interpolate along gradient direction to get these values.

Before Non-max Suppression

Gradient magnitude (x4 for visualization)

After non-max suppression

Gradient magnitude (x4 for visualization)

Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" to single pixel width
- 4. 'Hysteresis' Thresholding

'Hysteresis' Thresholding

- Two thresholds high and low
- Grad. mag. > high threshold? = strong edge
- Grad. mag. < low threshold? noise
- In between = weak edge
- Edge linking: 'Follow' edges starting from strong edge pixels
- Continue them into weak edges
 - Connected components

Final Canny Edges

 $\sigma = \sqrt{2}, t_{low} = 0.05, t_{high} = 0.1$

Effect of σ (Gaussian kernel spread/size)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" to single pixel width
- 4. *`Hysteresis' Thresholding:*
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
 - 'Follow' edges starting from strong edge pixels
 - Connected components (Szeliski 3.3.4)

Python: e.g., skimage.feature.canny()

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering